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Abstract
Commutator errors arise in large-eddy simulation of incompressible turbulent
flow from the application of non-uniform filters to the continuity – and Navier–
Stokes equations. For non-uniform, high order filters with bounded moments
the magnitude of the commutator errors is shown to be of the same order as
that of the turbulent stress fluxes. Consequently, one cannot reduce the size
of the commutator errors independently of the turbulent stress terms by any
judicious construction of such filter operators. Independent control over the
commutator errors compared to the turbulent stress fluxes can, instead, be
obtained by appropriately restricting the spatial variations of the filter-width
and filter-skewness. For situations in which the dynamical consequences of
the commutator errors are significant, e.g., near solid boundaries, explicit
similarity modelling for the commutator errors is proposed, including the
application of Leray regularization. The performance of this commutator
error parametrization is illustrated for the one-dimensional Burgers equation.
The Leray approach is found to capture the filtered flow with higher accuracy
than conventional similarity modelling, which is particularly relevant for large
filter-width variations.

PACS numbers: 47.27.Eq, 02.60.Cb

1. Introduction

In large-eddy simulation (LES) of turbulence one aims to predict the primary features of an
unsteady flow without explicitly resolving all dynamically relevant length-scales [1]. The
modelling of turbulent flow in large-eddy simulation starts from the introduction of a spatial,
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low-pass filter with externally specified filter-width �. This allows one to locally distinguish
flow-features with a length-scale larger than � from flow-features with length-scale smaller
than �. In the large-eddy simulation context, the former are referred to as ‘resolved’ while
the latter class of flow-structures is identified as ‘subgrid’ or ‘sub-filter’. During a simulation,
the time-dependent resolved scales are explicitly calculated while the dynamic effects of the
subgrid scales on the evolution of the resolved scales are represented through the introduction
of an explicit ‘subgrid’ model. In the filtering approach to large-eddy simulation the spatial
filter is traditionally assumed to be characterized by a single, spatially uniform operator, in
particular, with a single value for � throughout the flow domain [2].

The desire to extend large-eddy simulation to flows in complex domains generally implies
that one is confronted with strongly varying turbulence intensities within the flow-domain. In
certain regions a nearly laminar flow may exist while a lively, fine-scale turbulent flow can be
present simultaneously in other regions. As an example, one may think of flow over a backward
facing step [3, 4] which displays very small turbulent boundary layer scales characteristic of a
separated shear layer, while at other locations in the domain an unsteady but large-scale flow
may be observed. Various other examples from nature and technology come to mind, which
emphasize the need to incorporate heterogeneous smaller scales into the large-eddy approach
in order to consistently address turbulent flows in complex situations.

In the filtering approach to large-eddy simulation, strongly non-uniform turbulence can
be accommodated efficiently using a filter operator with non-uniform filter-width [5, 6]. The
use of such filters, however, complicates the subgrid closure problem through the appearance
of additional commutator errors [7]. These terms arise because non-uniform filtering does not
commute with spatial differentiation. That is, ∂xu �= ∂xu where ∂xu denotes differentiation
of the solution u with respect to x and the overline indicates the filter operation. In this paper
we (i) establish the magnitude of the additional commutator error closure terms relative to the
fluxes arising from the turbulent stress tensor, (ii) sketch under what conditions for the filter, the
commutator errors are likely to be dynamically relevant and (iii) for such situations, propose
and illustrate explicit similarity modelling and Leray regularization [8, 9]. These findings
encourage the further extension of the large-eddy approach to turbulence under realistic flow
conditions and in complex flow domains.

The general subject-matter of commutator-errors in large-eddy simulation was also the
topic of recent publications in [11, 12]. Compared to these references, the current paper
completes and complements in the three directions (i), (ii) and (iii) mentioned above. We
describe similarities and differences with these earlier publications next.

In [11] the basic equations associated with non-uniform spatial filtering were collected
and an a priori numerical assessment was given of the magnitude and spatial distribution
of commutator-errors, based on DNS data of a turbulent mixing layer. Moreover, explicit
similarity and gradient models for the commutator-error were compared with the actual
commutator-errors. Emphasis was put on determining the correlation between model and
actual commutator-error and on establishing the magnitude of the flux and the contribution to
the overall dissipation. Several higher order numerical filters were included, both symmetric
and skewed. In [12] a new explicit model for the commutator-error was proposed, based
on the approximate Lagrangian interpretation of the dynamic effect of the commutator-error.
An a priori analysis was given of the quality of the Lagrangian commutator-error model to
approximate the contributions to the resolved kinetic energy dynamics and to represent the
commutator-errors in the momentum equation.

The current paper is complementary to [11, 12] in three ways. First, a detailed theoretical
analysis is given of the magnitude of commutator-errors and of the magnitude of the turbulent
stress flux, for higher order filters with general spatial dependence of the filter-width and
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skewness distributions. This extends the treatment given in [11] which was restricted to
constant skewness. Second, the possibilities offered by the Leray regularization approach [8, 9]
to derive explicit models for the commutator-error are worked out in full detail. Third,
rather than restricting to a numerical a priori analysis, as was done in [11, 12], the dynamic
consequences of the Leray model in actual simulations were studied. For this purpose the non-
uniformly filtered Burgers equation was investigated. Predictions obtained with the new Leray
commutator-error model were compared with filtered DNS data and with predictions based
on an extended Bardina similarity model [13]. In summary, the current paper is dedicated to
the theoretical analysis of general non-uniform filters, to the Leray regularization and to the
dynamic consequences in actual numerical simulations of the Burgers equation.

The dynamic impact of the commutator errors can be clarified quite readily. As mentioned,
the distinction between which flow-features are ‘subgrid’ and which are ‘resolved’, depends
on the local filter-width �. Therefore, spatial – and temporal variations in � imply additional
energy-transfer and apparent interaction mechanisms among the scales in the computational
model, besides the well-known physical energy cascade in the Navier–Stokes equations [10].
In fact, if a flow structure propagates, or is swept from a region of small filter-width into
a region with strongly increased filter-width, it would appear as if (part of) this structure
had turned from a ‘resolved’ to a ‘subgrid’ feature, merely by translation. The reverse can
also be imagined, leading to the apparent emergence of resolved structures from a collection
of subgrid scales. This Lagrangian interpretation of the dynamics of commutator errors
suggests additional sources of local energy drain or backscatter, depending on the specific
local filter-width variations in the direction of the instantaneous local flow [11, 12]. If the
variations in the properties of the filter are sufficiently localized, an explicit parametrization
of the corresponding closure terms appears to be required in order to maintain an efficient and
accurate large-eddy representation of turbulent flow.

Progress toward successful large-eddy simulations of flows in and around complex
geometries would appear to require that the mathematical and numerical formulations of the
methods should at least remain compatible with basic aspects of the fluid dynamics equations.
In particular, such developments may include discretizations on non-uniform, time-dependent,
grids in complex geometry with corresponding non-uniform filter-width distributions in the
flow domain. Significant developments related to the application of such non-uniform filters
have appeared in the recent literature, e.g., [14, 15]. These developments are primarily
associated with the construction of specific high order filters. For such general ‘Nth order’
filters the magnitude of the commutator errors can be controlled to some degree. Specifically,
recent papers claim that the size of the commutator errors can be sufficiently reduced for these
terms to become negligible, simply by appropriately increasing the order of the adopted filter.
This claim seems over-simplified, however, and its further investigation motivates the present
study.

In the present paper we take a different approach to commutator errors. In fact, our main
result shows that non-uniform filtering in general leads to commutator errors which are of the
same formal order of magnitude as the turbulent stress fluxes in the filtered Navier–Stokes
equations. This holds for any higher order filter and emphasizes the point that the magnitude
of the commutator errors cannot be reduced independently of the turbulent stress fluxes by
high order filtering alone; commutator errors cannot simply be ‘filtered away’ independently.
Consequently, the question of determining the conditions under which commutator errors are
dynamically relevant, is still largely open.

A recent numerical a priori study [11], involving turbulent flow in a mixing layer, showed
that localized filter-width variations can lead to commutator errors about 25–30 % of the size
of the turbulent stress fluxes. Conversely, commutator errors were found quite negligible if the
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filter varies sufficiently smoothly, compared to dominant length-scales of the flow. This paper
complements the previous numerical study from a more theoretical point of view. Rather than
controlling the size of the commutator errors by increasing the order of the filter, the magnitude
of these contributions is found to be influenced by controlling the spatial variations in the filter
properties. We specify under what conditions the commutator errors can be expected to be
negligible relative to the turbulent stress fluxes. That is, we identify situations such that the
commutator errors do not require explicit closure. Alternatively, if these conditions cannot
be satisfied, e.g., in a turbulent boundary layer [6], the introduction of an additional, explicit
subgrid model for the commutator errors is summoned. For this purpose, we present an
alternative formulation for large-eddy simulation based on Leray regularization [8, 9] which
allows the systematic development of a subgrid model for the commutator errors. The results
of explicit Leray modelling are compared with extended similarity subgrid modelling [13].

To provide a first illustration of explicit dynamical consequences of commutator errors
and their similarity models, the evolution of running ‘ramp-cliff’ waves in the viscous Burgers
equation is studied in one dimension. It is shown that the ‘Leray-regularized’ formulation
provides a better representation of the non-uniformly filtered velocity field than the extended
Bardina similarity model for this situation. In particular, the Leray approach simultaneously
captures turbulent stress fluxes as well as commutator errors without increasing computational
costs compared to the traditional case of uniform filters. The extension toward non-uniformly
filtered turbulent flow in three dimensions is the subject of ongoing research.

The organization of the paper is as follows. In section 2 we consider how commutator
errors arise in applying non-uniform spatial filters to the Navier–Stokes equations. Then,
in section 3 the magnitude of the commutator errors is determined for general Nth order
filters and compared with the turbulent stress fluxes. For cases in which the variations in the
properties of the filter are sufficiently abrupt, explicit modelling of the dynamic effects of
the commutator errors is required. Similarity and Leray models are introduced in section 4
and their performance for the Burgers equation is illustrated numerically. Finally, concluding
remarks are collected in section 5.

2. Commutator errors in the filtering approach to large-eddy simulation

This section introduces a general class of non-uniform filters with compact support and applies
them to the equations governing incompressible flow. The application of a non-uniform filter
generates turbulent stress fluxes as well as commutator errors. Both groups of closure terms
will be written as the commutator bracket of the filter operator and either the product operator,
or the derivative operator. Consequently, the basic subgrid modelling problem in large-eddy
simulation shares a few formal algebraic properties with the Poisson-bracket in classical
mechanics [16, 17]. The filtered velocity field is shown to acquire a nonzero divergence as a
consequence of spatial variations in the filter properties. Finally, the effects of the commutator
errors are described in terms of their contributions to the kinetic energy evolution. This
description expresses the additional energy-transfer and interaction mechanisms associated
with non-uniform filtering.

The usual formulation of the filtering approach to large-eddy simulation is based on
convolution filters. This formulation assumes that the width of the filter is constant. However,
the efficient extension of large-eddy simulation to turbulent flows in complex geometries or
to cases with strong spatial variation of turbulence intensities, calls for the introduction of
non-uniform filter-widths. For example, turbulent boundary layers or multi-phase flows and
strongly localized combustion phenomena comprise three examples of turbulent flows whose
efficient modelling naturally summons spatially varying filter-widths.



Commutator errors in large-eddy simulation 2217

The approach adopted here is based on a general compact-support filter, whose application
in one spatial dimension is denoted by �:

u(x, t) = �(u)(x, t) =
∫ x+�+(x,t)

x−�−(x,t)

H(x, ξ, t)

�(x, t)
u(ξ, t) dξ (1)

where H(x, ξ, t) is the ‘characteristic’ filter function and �± � 0 denote the upper – and
lower bounding functions which define the filter-width � = �+ + �−. The filter � is assumed
to be normalized, i.e., �(1) = 1. This class of filters can readily be extended to product-
filters in three spatial dimensions by defining the composition L = �1 ◦ �2 ◦ �3 where �j

with j = 1, 2, 3, represents filtering in the xj -direction only, as in (1). In complex flows,
spatial and temporal variations in turbulence-intensity pose different requirements on the local
length-scale with which the flow should be represented in order to maintain an acceptable
level of accuracy. Such situations may be addressed by allowing a non-uniform filter-width, as
suggested in (1). However, the application of such filters gives rise to a number of additional
closure terms, to which we turn next.

As is well known, incompressible flow is governed by the principles of conservation
of mass and momentum. These can be expressed in terms of the continuity equation and
Navier–Stokes equations as

∂juj = 0 ∂tui + ∂j (ujui) + ∂ip − 1

Re
∂jjui = 0, i = 1, 2, 3 (2)

where uj is the component of the velocity u in the xj -direction, t denotes time and ∂t , ∂j

are the partial derivative operators with respect to t and xj respectively. Moreover, p is the
pressure and Re = (urλr)/νr denotes the Reynolds number in terms of reference velocity ur ,
length-scale λr and kinematic viscosity νr [18]. Throughout, the summation convention is
adopted, implying summation over repeated indices.

If one applies the filter L to the incompressible flow equations, commutator errors may
arise, e.g., if ∂xf −∂xf = L(∂xf )−∂x(L(f )) = [L, ∂x](f ) �= 0. Here, the commutator error
is written in terms of the commutator bracket [L, ∂x] of L and the derivative operator ∂x . One
may show that [L, ∂j ](f ) = 0 for j = 1, 2, 3, if and only if the filter L is a convolution filter,
which, by definition is spatially uniform. As for the continuity equation, we may formally
write

∂juj = −[L, ∂j ](uj ). (3)

Hence the divergence of the non-uniformly filtered velocity differs from zero, i.e., uj is not
solenoidal, and the corresponding continuity equation is no longer in local conservation form.
The term on the right-hand side corresponds to apparent local creation and annihilation of
‘resolved’ mass as a consequence of variations in �± and H. Further developments and explicit
parametrization are needed before this effect of non-uniform filtering can be consistently
integrated into the large-eddy formulation. As an example, the form of (3) may motivate
similarity modelling of the right-hand side: [L, ∂j ](uj ) → [L, ∂j ](uj ). This yields specific
contributions to the Poisson equation for the pressure and is a subject of current research.

Likewise, filtering the Navier–Stokes equations yields the following system of equations:

∂tui + ∂j (ujui) + ∂ip − 1

Re
∂jjui = −

{
[L, ∂t ](ui) + ∂j ([L, S](ui, uj )) + [L, ∂j ](S(ui, uj ))

+ [L, ∂i](p) − 1

Re
[L, ∂jj ](ui)

}
. (4)

We observe that commutator brackets emerge involving the filter L and the product operator
S(f, g) = fg, as well as commutator brackets of L and first- or second-order partial
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differentiation. Filtering a linear term such as ∂tui gives rise to a ‘mean-flow’ term ∂tui and a
corresponding commutator error [L, ∂t ](ui). Filtering the nonlinear convective terms leads to
two different types of closure terms. First, as in the case of uniform filtering, the divergence
of the turbulent stress tensor τij = uiuj − uiuj = [L, S](ui, uj ) arises. The divergence of
τij will be referred to as the turbulent stress flux. Second, an associated commutator error
[L, ∂j ](S(ui, uj )) emerges from filtering the convective fluxes. The local conservation form
of the Navier–Stokes equations is no longer maintained as a result of the non-uniform filtering,
similar to what was observed in (3) for the continuity equation.

Spatial filtering of the incompressible flow equations gives rise to an ‘LES-template’
[1] in which the ‘Navier–Stokes’ operator on the left-hand side of (4) acts on the filtered
solution {ui, p}. In addition, several unclosed terms arise. Of these, only the parametrization
of the turbulent stress fluxes ∂j ([L, S](ui, uj )) = ∂j τij has attracted much attention in the
literature. However, the subgrid modelling problem associated with non-convolution filters
entails various additional commutator errors. These terms require explicit modelling in case
the spatial and temporal properties of the filter are sufficiently variable, as will be discussed
in the next section.

The effects of the commutator errors can be effectively quantified by considering the
turbulent kinetic energy equation. Multiplying (4) by ui and summing over i yields after some
rewriting

∂t (k) + ∂j (ujk) = 1

Re
ui∂jjui − ui∂j τij − k∂juj − ui∂ip

−ui[L, ∂t ](ui) − ui[L, ∂j ](uiuj ) − ui[L, ∂i](p) +
1

Re
ui[L, ∂jj ](ui) (5)

where k = uiui/2 and we have used the identity ∂j (ujuiui) = 2ui∂j (ujui) − uiui∂juj . On
the right-hand side of (5) one identifies contributions due to the viscous terms and the turbulent
stresses. Moreover, since ∂juj �= 0, a specific commutator error contribution arises from the
continuity equation (3) in addition to a pressure related term. The last four terms on the
right-hand side of (5) represent effects of commutator errors in the momentum equations (4).

The resolved kinetic energy in a flow domain � of size |�| is defined as

E = 1

|�|
∫

�

dx
1

2
uiui. (6)

In a flow domain with periodic boundary conditions, the evolution of E can be written in terms
of the commutator error contributions as

|�|dE

dt
= −

∫
�

dx
(

1

Re
∂jui∂jui − τij ∂jui

)
−

∫
�

dx(p − k)[L, ∂j ](uj )

−
∫

�

dx ui([L, ∂t ](ui) + [L, ∂i](p)) −
∫

�

dx ui[L, ∂j ](uiuj )

+
1

Re

∫
�

dx ui[L, ∂jj ](ui) (7)

after some partial integrations. One observes the usual dissipation of kinetic energy E due to
the viscous terms, as well as the transport term involving the subgrid stress tensor: τij ∂jui .
Moreover, one notices a contribution arising from the fact that the filtered velocity field is no
longer solenoidal involving (p − k)[L, ∂j ](uj ). Finally, four terms emerge characterizing the
effects of the commutator errors in the momentum equations. The magnitude of the various
terms and commutator errors can be quantified by explicitly evaluating the different integrals
during a simulation or by post-processing direct numerical simulation databases (see also
[11]).
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The commutator brackets in (3) and (4) satisfy two fundamental algebraic identities. For
any two filters L1 and L2 then

[L1L2, S] = [L1, S]L2 + L1[L2, S] (8)

which is known as Germano’s identity [2]. Likewise,

[L1, [L2, S]] + [L2, [S,L1]] + [S, [L1, L2]] = 0 (9)

which is recognized as Jacobi’s identity. These identities are also satisfied if S is replaced by
∂t or ∂j . This shows that the structure of the large-eddy closure problem has some formal
similarities to the Poisson-bracket in classical mechanics. In that context, Germano’s identity
is known as the Leibniz rule. The identities (8) and (9) can be used to guide (dynamic) subgrid
modelling of the central commutator brackets. The dynamic procedure has been successfully
applied to the modelling of the turbulent stress tensor [19] and can also be extended to improve
base models developed for the commutator errors. An alternative modelling approach, based
on regularization principles [9] will be discussed in section 4. However, before considering
explicit subgrid modelling for the commutator errors, we turn to estimating the magnitude of
the commutator errors relative to the turbulent stress fluxes, in the next section.

3. Magnitude of commutator errors and turbulent stress fluxes

This section introduces general high order filters and shows that the commutator errors and
turbulent stress fluxes associated with these filters are formally of the same order in the filter-
width �. Subsequently, limitations on the non-uniformities of the filter are characterized, and
situations are identified in which commutator errors are much smaller than the turbulent stress
fluxes. In what follows, we consider only filters that do not depend explicitly on time, i.e.,
[L, ∂t ] = 0.

In principle, all commutator errors in (3) and (4) require explicit parametrization in
much the same way as the turbulent stress fluxes do. However, in practice one would like
to address this subgrid closure only for those contributions that are actually dynamically
relevant. The contributions of the commutator errors have been considered unimportant by
some authors, provided a suitable class of so-called high order filters [20] would be adopted.
Different, symmetric filters were constructed such as in [14, 15] in which it was shown that
the commutator errors could be made of arbitrarily high order in � by raising the order of the
filter appropriately.

Although it is correct that the commutator errors can be made small with the proper
filter, we will complement this statement by showing that with that same filter the turbulent
stress fluxes are also reduced at the same rate. More specifically, in the general case both
contributions scale with the same power of the filter-width � [21]. Earlier studies will be
extended by allowing the filter to be skewed [11], which may occur, e.g., near solid boundaries,
or for filters expressed directly in terms of an underlying non-uniform computational grid, i.e.,
for filters whose support is set equal to an integer number of grid-cells. Hence, we find that
the size of the commutator errors may not be controlled independently of the magnitude of
the turbulent stress fluxes simply by adopting appropriate, high order, non-uniform filters.

The importance of the commutator errors relative to the turbulent stress fluxes may be
established by taking the following steps. We first introduce general Nth order filters by
requiring that L(xk) = xk for k = 0, 1, . . . , N − 1 [21, 20]. Without significant loss of
generality, we may consider compact support filters in one spatial dimension. If we introduce
the integration-variable y = (ξ − x)/�(x) in (1) we may write

u(x, t) =
∫
Ix

dy H(x, x + �(x)y)u(x + �(x)y, t) (10)
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where the support of the filter is given by

Ix =
{
y ∈ R

∣∣∣∣σ(x) − 1

2
� y � σ(x) + 1

2

}
, σ (x) = �+ − �−

�+ + �−
(11)

in terms of the ‘normalized skewness’ of the filter, σ , which satisfies |σ | � 1. The filtering of
xk may now be expressed as

xk =
∫
Ix

dy H(x, x + �(x)y)(x + �(x)y)k

=
k∑

m=0

(
k

m

)
xk−m�m(x)m!Mm(x), (12)

in terms of the ‘moments’

Mm(x) = 1

m!

∫
Ix

dy H(x, x + �(x)y)ym. (13)

By requiring the characteristic filter function H to be such that Mm(x) = δm0 for m =
0, 1, . . . , N − 1 an Nth order filter is obtained [21, 22].

Application of an Nth order filter to a smooth signal u yields:

u − u =
∞∑

m=N

(�m(x)Mm(x))u(m) = �N(x)MN(x)u(N) + · · · (14)

where u(m) denotes the mth spatial derivative of u. We observe that the effect of the filter,
expressed as the difference between u and u, scales with the Nth power of the filter-width �. In
addition, the moment MN determines the magnitude of the filter’s effect. For symmetric filters
all odd-numbered moments are 0; hence such filters have even order. Important examples
are the top-hat and Gaussian filters which are of second order. By perturbing such a filter to
become skewed, e.g., at nonzero σ or if the form of H is altered appropriately, the formal order
will typically reduce to 1, although higher order skewed filters may readily be determined as
well [21]. We next investigate the effect of these filters on the commutator error and turbulent
stress flux.

To quantify the various subgrid contributions in more detail we consider the following
decomposition of a typical nonlinearity:

∂x(u2) = ∂x(u
2) + ∂x(u2 − u2) + {∂x(u2) − ∂x(u2)}

= ∂x(u
2) + ∂x([L, S](u)) + [L, ∂x](S(u)) (15)

in which we distinguish a mean flux contribution ∂x(u
2) next to the turbulent stress flux

∂x([L, S](u)) and the commutator error [L, ∂x](S(u)). Analogous to (14) we may find
expressions for ∂x(u2) and u2 and hence also for ∂x(u2). Based on this, after some calculation
the commutator error [L, ∂x](S(u)) can be written as

[L, ∂x](u2) = −
∞∑

m=N

(�mMm)′((u2)(m))

= −
∞∑

m=N

(m�m−1�′Mm + �mM ′
m)((u2)(m)) (16)

where the prime indicates differentiation with respect to x. Combination of u2 and u2 allows
the turbulent stress tensor to be expressed as
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[L, S](u) =
∞∑

m=N

(�mMm)gm(x) (17)

gm(x) = [(u2)(m) − 2uu(m)] − u(m)(x)

∞∑
k=N

(�kMk)u
(k)(x) (18)

and, correspondingly, we find for the turbulent stress flux

∂x([L, S](u)) =
∞∑

m=N

(�mMm)′gm(x) + (�mMm)g′
m(x). (19)

Expressions (16) and (19) form a basis for discussing the magnitude of the commutator error
and turbulent stress flux for general Nth order filters.

To estimate the magnitude of the commutator error and the turbulent stress flux, we
first collect some basic properties. We describe the non-uniform filter-width in (1) by
�±(x) = εf±(x) with constant ε such that 0 � ε � 1. We assume that f± are positive,
bounded functions, with bounded derivatives.

• Correspondingly, �(x) = εf (x) with f = f+ + f− � 0, and �′ = εf ′. Since f and f ′

are bounded, we observe that both � and �′ are of the same order in ε. In particular,
�m = εmf m and �m−1�′ = εmf ′f m−1 are both of m-th order in the parameter ε.

• The normalized skewness σ and its derivative σ ′ do not reduce to 0 as ε → 0; these
quantities are of zeroth order in ε.

• The moments Mm may be evaluated in more detail when the characteristic filter function
H(x, ξ) has a convergent Taylor expansion at every x in the domain: H(x, ξ) =∑

k=0 ak(x)(ξ − x)k with a0 �= 0. In this case the dominant contribution to Mm is
of zeroth order in �, i.e., Mm does not reduce to 0 as ε → 0. This case excludes
‘singular’ filters for which �mMm = const for some m.

• It may be shown that M ′
m is governed by three different terms; (i) a contribution arising

from ∂xH(x, ξ) + ∂ξH(x, ξ) �= 0, i.e., H(x, ξ) �= H(x − ξ) expressing the fact that the
characteristic filter function is not of convolution type, (ii) a contribution proportional to
�′ and (iii) a contribution proportional to σ ′. The dominant contributions to M ′

m may be
shown to be of zeroth order in ε in case H has a convergent Taylor expansion.

• Finally, we consider gm as arise in (17). Since (u2)′ − 2uu′ = 0 it is convenient to
distinguish the case m = 1 from m � 2. The contribution at m = 1 only arises as N = 1
and we observe that typically the dominant contribution to g1 is proportional to �M1.
In case m � 2 the dominant term arises from (u2)(m) − 2uu(m) and is also of zeroth order
in ε.

The actual magnitude of the various contributions in (16) and (19) depends strongly on the
specific non-uniformity of the upper and lower bounding functions �± and the specific filter
that was adopted in a given application. However, the typical dominant scaling with ε can be
inferred quite generally.

After performing these basic estimates, we may summarize our findings as follows.
Turning to (16) both contributions under the summation are of m-th order in ε; the first
term because Mm is of O(ε0) and �m−1�′ ∼ O(εm), the second because M ′

m is of O(ε0).
Therefore, [L, ∂x](u2) ∼ O(εN). Likewise, if the order of the filter N � 2, the turbulent
stress tensor in (17) scales with εN since gm is of O(ε0) for m � 2. If N = 1 we observed
g1 ∼ �M1 and so [L, S](u) ∼ ε2. Consequently, the turbulent stress flux in (19) is of order
εN with a characteristic contribution ∼�′�N−1 as N � 2. In case N = 1 the turbulent
stress flux typically scales with ε2 with a characteristic term ∼�′�. Hence, the two subgrid
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contributions to the total flux in (15) are formally of equal order of magnitude if N � 2. If
N = 1 the situation becomes even more striking; the commutator error scales with terms of
O(ε) while the turbulent stress flux scales with terms which are formally of O(ε2). In this
case, which corresponds, e.g., to the application of a skewed top-hat or Gaussian filter, the
formal order of magnitude of the commutator error is even larger than that of the turbulent
stress fluxes.

The detailed evaluation of the turbulent stress flux and the commutator error indicates an
alternative route toward (some) independent control over the ratio of these contributions. It is
well known that commutator errors are zero if and only if the filter is a strict convolution filter.
Therefore, it will be intuitively clear that if the spatial filter is ‘close’ to this case, the dynamic
implications of the commutator errors are likely to be small. Specifically, this implies that
variations in � and in σ as well as the deviation of H(x, ξ) from a function H(x−ξ) should be
kept sufficiently small. For general Nth order filters, a separate control over the commutator
error can be obtained only by restraining these non-uniformities. In such cases one could
argue that explicit modelling of the commutator errors may not be required. Conversely, for
sufficiently large variations of these filter properties, the fluxes associated with the commutator
errors may become significant and require explicit treatment. An a priori analysis along these
lines has been described in [11], using direct numerical simulation data of a turbulent mixing
flow. This numerical analysis illustrates the estimates above and indicates that for significant
filter non-uniformities the commutator errors can no longer be neglected.

Further estimates of the dynamic significance of the commutator errors may be obtained
via Fourier analysis. Roughly speaking, this approach relates the spatial non-uniformities of
the filter to a typical length-scale of the flow-structure being considered. To illustrate. we
focus attention on a symmetric top-hat filter; the analysis for general filters is beyond the
scope of this paper and will be published elsewhere. In a single-mode analysis, one assumes
a solution u = sin(kx) and finds explicitly

∂x([L, S](u)) + [L, ∂x](u2) = C(k�)

{
k sin(2kx) +

�′

�
(cos(2kx) − 1)

}
(20)

where the flux-amplitude function C is given by

C(z) = z sin(z) − 2 + 2 cos(z)

z2
= − 1

12
z2 +

1

180
z4 + O(z6) (21)

showing a dominant scaling with (k�)2 as |k�| � 1. The two contributions to the flux in
(20) have ‘weights’ k and (�′/�), respectively, from which one infers that if variations in �

are sufficiently ‘mild’, i.e. |�′| � |k�| then filter-width non-uniformity can be disregarded.
In general, for symmetric second order filters one may show that

‖[L, ∂x](S(u))‖
‖∂x([L, S](u))‖ ∼ |�′/�|

|k| (22)

where ‖·‖ denotes the L2-norm. Again |�′| � |k�| is required for the dynamics of a structure
with wave number k not to be significantly altered by filter-width irregularities.

As sketched in the introduction, the accumulated effect of the commutator error arises as a
parcel of fluid moves through regions of decreasing/increasing filter width. In the Lagrangian
framework, the material time-derivative of the filter-width is hence a precise measure for
quantifying the commutator error effects in physical space [11, 12]. Consequently, control
over D�/Dt = ∂t�+uj∂j� can be helpful in appropriately restricting filter-width variations
along flow-paths. Keeping the commutator error effects small enough is particularly difficult
in turbulent boundary layers. In a priori estimates using direct numerical simulation of a
temporal boundary layer flow [6] it appeared that close to solid walls the flux contribution
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from the commutator errors is about half as large as the turbulent stress fluxes, and explicit
modelling of commutator error appears to be necessary. Various possible closures for the
commutator error may be proposed [23]. The next section considers the commutator errors in
similarity modelling and in the Leray regularization approach.

4. Similarity and regularization modelling of commutator errors

This section considers situations in which the spatial variations in the filter-width are
sufficiently localized to motivate explicit modelling of the commutator errors. We consider
only similarity modelling and Leray regularization. Specifically, we will extend Bardina’s
approach [13] to include commutator errors and derive the implied subgrid models for the
turbulent stresses and the commutator error, arising from non-uniform Leray regularization
[8, 9]. Subsequently, we compare these two large-eddy models in a simple but illustrative
situation by considering ‘ramp-cliff’ solutions of the viscous Burgers equation running across
a region of strong filter non-uniformity.

Bardina’s similarity model for the turbulent stress tensor arises by applying the definition
of τij = [L, S](ui, uj ) to the filtered solution ui , i.e.,

τij → mB
ij = [L, S](ui, uj ) = uiuj − uiuj . (23)

Extending this idea to the commutator error suggests the following parametrization:

[L, ∂j ](uiuj ) → [L, ∂j ](uiuj ). (24)

In a turbulent boundary layer flow the model contributions (23) and (24), were shown to
provide a high correlation with the actual turbulent stress tensor and commutator errors
respectively [6]. The extended Bardina model may be motivated in an alternative manner.
Instead of distinguishing separate closure problems for the commutator error and the
turbulent stress fluxes, we may consider the full non-uniformly filtered convective flux, i.e.,
∂j (uiuj ) − ∂j (uiuj ) [24]. One may verify that

∂j (uiuj ) = ∂j (uiuj ) + {∂j (uiuj ) − ∂j (uiuj )}
= ∂j (uiuj ) + [L, ∂j ◦ S](ui, uj ). (25)

The similarity closure arises as before, i.e., [L, ∂j ◦ S](ui, uj ) → [L, ∂j ◦ S](ui, uj ), where:

[L, ∂j ◦ S](ui, uj ) = [L, ∂j ] ◦ S(ui, uj ) + ∂j ◦ [L, S] (ui, uj ) (26)

In rewriting this model, use was made of the Leibniz rule (8), applied to the operators L, ∂j

and S. The similarity modelling of the separate closure problems for the commutator error, cf
(24), and the turbulent stress fluxes, cf (23), is hence re-obtained directly from the similarity
modelling of the full convective-flux. By adopting the same modelling assumptions for both
the turbulent stress tensor and the commutator error the combined model can be implemented
at reduced computational cost.

Recently, the Leray regularization principle [8] was revisited in the context of large-eddy
simulation [9]. In this approach the convective fluxes uj∂jui are replaced by uj∂jui , i.e.,
the solution u is convected with a smoothed velocity u. The governing Leray equations for
incompressible flow are given by

∂juj = 0, ∂tui + uj∂jui + ∂ip − 1

Re
∂jjui = 0. (27)

This formulation can be written in terms of {ui, p} by assuming the existence of a (formal)
inverse L−1 of L, i.e., uj = L−1(uj ). After some calculation, one obtains the filtered
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momentum equation as

∂tui + ∂j (uiuj ) + ∂ip − 1

Re
∂jjui = −

(
[L, ∂t ](ui) +

{
∂j

(
mL

ij

)
+ ui∂juj

}
+ [L, ∂j ](S(ui, uj ))

+ [L, ∂i](p) − 1

Re
[L, ∂jj ](ui)

)
. (28)

The divergence of the turbulent stress tensor ∂j τij in (4) is represented in terms of the Leray
model mL

ij = ujui −ujui and an additional term associated with the divergence of the filtered
velocity field:

∂j τij → ∂j

(
mL

ij

)
+ ui∂juj , (29)

in which the commutator error is expressed as [L, ∂j ](uiuj ) → [L, ∂j ](ujui). The other
commutator errors are identical to those in (4) with the understanding that in actual simulations
every occurrence of an unfiltered flow-variable implies the application of L−1 to the smoothed
field. The Leray model is known to provide good predictions of three-dimensional turbulent
mixing at arbitrarily high Reynolds number when a uniform filter is used [9].

To illustrate the dynamics associated with commutator errors and the quality of their
explicit modelling we consider simulations of the one-dimensional viscous Burgers equation.
While the dynamics of the viscous Burgers equation is clearly different from that of the
Navier–Stokes equations, both models for fluid flow are quadratically nonlinear and exhibit
the same commutator errors, except for the pressure term. First, we describe the numerical
method, then some a priori analysis is given to establish the magnitude of the commutator
errors for specific non-uniformities in filter width and finally we illustrate the performance of
the explicit similarity and regularization models for the commutator errors.

We consider the one-dimensional viscous Burgers equation

∂tu + ∂x

(
1

2
u2

)
− 1

Re
∂xxu = 0 (30)

and adopt Re = 500. The numerical treatment of this equation follows the standard method
of lines [1]. Introducing uj (t) = u(xj , t) as the discrete solution at location xj at time t, the
method of lines implies the semi-discretization

duj

dt
+ fj = 0, uj (0) = u0(xj ) (31)

where fj denotes the numerical flux at xj and u0 the initial condition. We adopt periodic
boundary conditions and obtain the numerical flux by second order accurate finite differencing
on a non-uniform grid. The approximation of the convective term (1/2)∂x(u

2) follows from

∂x(u
2) → δx(u

2)j = u2
j+1 − u2

j−1

xj+1 − xj−1
(32)

and the approximation of the viscous term ∂xxu results from

∂xxu → δxx(u)j = aj,j+1uj+1 − aj,juj + aj,j−1uj−1 (33)

where

aj,j+1 = 2

(xj+1 − xj )(xj+1 − xj−1)

aj,j = 2

(xj+1 − xj )(xj − xj−1)

aj,j−1 = 2

(xj − xj−1)(xj+1 − xj−1)
.

(34)
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Figure 1. Solution to the Burgers equation initiated with a Gaussian profile, developing into a
ramp-cliff structure at Re = 500. The solution is shown at times t = 0, 1, 2, . . ..

On a uniform grid with grid-spacing h these weights reduce to aj,j−1 = aj,j+1 = 1/h2 and
aj,j = 2/h2 which is recognized as the second-order accurate finite difference scheme for the
second-order derivative.

The system of ordinary differential equations in (31) is integrated in time using explicit
time-integration, restricted by stability time-steps. In fact, we use time-steps associated with
local stability that follow from the Courant–Friedrich–Lewy condition (CFL). This implies

�t = min
j

(�tj ), �tj = �
�xj

|uj | , �xj = xj+1 − xj−1

2
(35)

where the CFL-number � is chosen consistent with the stability requirements of the adopted
time-integration method. Use was made of either the explicit Euler forward method at a
low value � = 0.1 or the compact storage, four-stage explicit Runge–Kutta method with
� = 1.5 [1].

The implementation of the Bardina model follows the standard LES-template (4), applied
to the one-dimensional Burgers equation. For the Leray model we used (27) as the basis
for the implementation. Since the numerical illustration is in one spatial dimension only,
computational resources do not represent a limiting factor. Consequently, we can avoid effects
of numerical errors [25–27] by adopting sufficiently high spatial resolution. Typically, we
show results in which the Burgers equation is discretized using grids with N = 2048 intervals.
This is more than adequate for obtaining the nearly grid-independent, unsteady solution, as was
verified independently by comparing results on different grids. An example of a developing
ramp-cliff solution is shown in figure 1. The initial velocity profile consists of a small positive
value to which a Gaussian profile is added. In the examples shown, this Gaussian profile is
centred around x = −5 and its width was selected as 5.

The explicit filtering required in the Bardina and Leray models, or when filtering direct
numerical simulation data, was implemented using the trapezoidal rule for evaluating the
top-hat filter. Specifically, we define

uj (t) = 1

xj+n1 − xj−n2

∫ xj+n1

xj−n2

u(ξ, t) dξ (36)
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Figure 2. Snapshot of the solution (multiplied by 1/2) (solid) and filtered solution (solid;
markers o) obtained at N = 2048. Convective flux: total (dots), mean (dash-dotted), turbulent
stress (dashed), commutator error (solid with ∗). In (a) we use � = �/16, i.e., computational
filter-width n1 = n2 = 64 and in (b) the non-uniform case with A = 1/2 and the same values of
n1 and n2 is shown. Underneath in (b), the grid-spacing (minus 0.2) as a function of x is presented.

which covers n1 + n2 grid-cells. In terms of the grid, a non-uniform filter-width �j =
xj+n1 − xj−n2 is obtained together with a normalized skewness

σj = xj+n1 − 2xj + xj−n2

xj+n1 − xj−n2

. (37)

The integration over ξ in (36) is evaluated using the composite trapezoidal rule. This rule is
sufficiently accurate, because in one dimension we can allow for large numbers of intervals,
i.e., take n1 and n2 large enough to imply negligible discretization errors. This setting allows
one to approximate the grid-independent large-eddy solution corresponding to a fixed filter-
width distribution. In fact, if the resolution N is increased by a factor k then n1 and n2 need to
be increased with the same factor in order to properly represent the filter-width non-uniformity
as a fixed, externally specified aspect of the flow problem. If, instead, only N were increased at
fixed n1, n2, this would lead to a decrease of the filter-width with increasing resolution. This
situation corresponds to a gradual convergence to a direct numerical simulation and not to the
desired large-eddy formulation consistent with a given filter-width distribution.

We consider a non-uniform grid with grid-spacing hi = (�/N)(1 + gi) where � is the
length of the domain, which was set equal to 20 in our simulations. The grid is non-uniform
around i = N/2 with

gi = A sin

(
2π

(i − N/2)

(N(m − 2q)/m)

)
,

qN

m
� i � (m − q)N

m

and 0 otherwise. We use q = 3,m = 8 and N = 2n with n sufficiently large. The parameter
A < 1 controls the ratio between largest and smallest intervals (1 + A)/(1 − A).

In figure 2 we collected the contributions to the total convective flux for a representative
uniform and non-uniform case. The solution and the filtered solution both display the ‘ramp-
cliff’ structure. The total flux in figure 2(a) is piecewise linear and the turbulent stress flux is
localized in the cliff-region. In figure 2(b) the filter-width non-uniformity strongly influences
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Figure 3. Location of the head x+ of the cliff (upper curves) and the tail x− of the ramp (lower
curves) in (a) and in (b) snapshot of the filtered solution: filtered Burgers (solid), Leray (dashed)
and Bardina (dash-dotted) for A = 0.85 and n1 = n2 = 64 at N = 2048.

the mean flux on the ‘ramp side’ near x = −3. The commutator error compensates for this
such that the total flux remains nearly linear in x. The commutator error and the turbulent
stress flux have comparable magnitude in the filtered cliff-region 2 � x � 4, in which these
contributions are seen to partially counteract each other.

In figure 3(a) we show the locations of the front and back of the ramp-cliff solution
as a function of time. These locations are defined to be where |u| equals max(|u|)/20.
Upon comparing filtered Burgers results with predictions from the Leray and Bardina
parametrizations, one finds the Leray results are more accurate. The L2-norm of the fluxes
show that the commutator error is about 1/3–1/2 the value of the turbulent stress flux in
this case. The Leray model also preserves better the qualitative properties of the filtered
Burgers solution cf figure 3(b). The Bardina parametrization creates additional variations in
the solution, which do not correspond to the physics of the filtered Burgers equation in this
rather extreme non-uniform case.

5. Concluding remarks

In this paper the commutator errors associated with non-uniform filtering in large-eddy
simulation were studied. For a general class of non-uniform filter operators the filtered,
incompressible Navier–Stokes equations were derived and all closure terms were identified.
Besides the turbulent stress contributions, commutator errors were shown to arise and a
Lagrangian interpretation of their dynamical effects was provided. The order of magnitude of
the commutator errors and the turbulent stress fluxes was derived for arbitrary high order filters,
with bounded moments. The main result of this analysis is that both closure contributions
scale with the same order of the filter-width, when the spatial non-uniformity is nonzero. This
implies that while an increase in the order of the spatial filter allows control over the magnitude
of the commutator error, the flux due to the turbulent stress is affected simultaneously in the
same order of magnitude. Hence, an independent control over the commutator errors cannot
be obtained through the application of a general high order filter.
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A more detailed analysis of the commutator errors and turbulent stress fluxes shows
that the commutator errors may be reduced in size by explicitly restricting the variations in
the filter-width �′ and normalized skewness σ ′ of the filter. This suggests employing only
gradually varying filter-widths in complex geometries, from the point of view of avoiding
explicitly modelling of the commutator errors. In view of maintaining appropriate efficiency
in large-eddy simulations of turbulent flows in/around complex geometries it may be required
to allow for sharp variations in � and σ . In such cases the dynamic importance of the
commutator errors summons an explicit parametrization of the commutator errors.

For symmetric filters, so long as |�′| � |k�|, where 1/k is indicative of the length-scale
of the flow-feature, explicit modelling is not required. However, at sufficiently large grid
non-uniformities explicit modelling will become necessary. An extension of the similarity
approach was formulated and compared with the Leray regularization approach. The Leray
parametrization captures both the flux due to the turbulent stresses and the commutator errors
in one model. Consequently, it combines computational efficiency with high accuracy. This
result motivates the use of the Leray model in complex flows and it stimulates the study of
more general regularization approaches for the closure of commutator errors in large-eddy
simulation. As a first illustration, the prediction of the solution to the non-uniformly filtered
Burgers equation was studied and the Leray approach was found to provide higher accuracy
than the full similarity modelling. The extension to turbulent flow in three dimensions is
presently being considered and will be presented elsewhere.
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